AAASeed - Net Requests

Documentation for the net_requests Class

The net_requests class in the AAA framework provides a set of functions to make HTTP
requests, handle JSON responses, and easily authenticate with all common methods. This
documentation will provide an overview of the class and its capabilities. The functionality
provided here gives AAASeed the power to access a large portion of the internet and
interact with nearly all APlIs.

Overview:

The net_requests class is responsible for handling asynchronous HTTP requests such as GET,
POST, PUT, PATCH, DELETE, and downloading files. It uses the CPR library for making HTTP
requests and RapidJSON to handle JSON data, with a custom parsing function to perform
conversion from JSON to Lua tables for ease of access. Additionally, it automatically handles
HTTPS authenticated requests and has functions for providing username/password
authentication in Basic, Digest, or NTLM mode, as well as for OAuth - Bearer Token (one of the
most common for interacting with APIs these days). This class is exposed to Lua through the
global net_requests table (aaa.net_requests), defined in net_requests_lua.cpp.

This class prioritizes simplicity and ease of use to make this functionality as accessible as
possible for artists looking to build installations with AAASeed that interact with APIs. All
requests are handled asynchronously outside of Lua in a completely non-blocking manner,
ensuring that requests or downloads with high latency create zero impact on the other
processes and visuals running in AAASeed.

The high-level user flow for interacting with the net_requests class is as follows:
1. Make a request with the desired HTTP verb.
2. Receive the ID of the request.
3. Check as frequently as desired to determine whether the request was completed or not,
and if it was successful or not.
4. If the request was successful, parse the result and use it.

This leaves it up to the needs of the specific application to decide how often to check the results
of a request in-progress - some applications may want to check this every update frame to get
the result as soon as possible, while others may only care to check at a longer interval. In any
case, the “checking” process to see if a request is done creates virtually zero overhead and has
no impact on rendering time, even if checked every frame.

https://docs.libcpr.org/

Multiple requests may be executed simultaneously via the same functions - the only thing that a
Lua user needs to pay attention to is keeping tabs on the returned request IDs to ensure that
they’re checking for the completion and results of the correct request.

To ease this process (depending on the application), a function is also provided for enumerating
the request IDs and their completion status as a Lua table. This allows for a Lua function to be
simply written to iterate over this table and fetch the results of any requests that have been
completed.

Notably, for simplicity, the act of retrieving a response to a request deletes the response
from the response map contained within net_requests. This means that only one MEU
per application should be responsible for obtaining the response to any single request -
otherwise, requests will appear to disappear if a second MEU is attempting to retrieve the
result of the same request as another. This may be an area to modify in the future
depending on user requirements, but is expected to be acceptable and preferred
behaviour for now to prevent accidental reading of responses for old requests.

APl Reference

All functions are provided in the aaa.net_requests table.

Authentication

Each of these functions sets the credentials for the corresponding authentication mode and
automatically enables the mode for all subsequent requests.

e set_basic_auth(username, password)

e set_digest_auth(username, password)

e set_ntlm_auth(username, password)

e set_oauth(token)
Authentication can be temporarily disabled and re-enabled later (without having to pass in
credentials and mode again) by using:

e disable_auth()

e enable_auth()

o Returns 1 if successful, 0 if mode/credentials were not set previously

Credentials can be cleared using:

e clear_auth()

Requests

Methods below are unauthenticated by default. Calling any of the set functions in the
Authentication section will enable authentication for all requests unless disable_auth() or
clear_auth() is called. HTTPS is supported automatically.

All functions here return a request_id.

e request_get(url)
request_post(url, payload)
request_put(url, payload)
request_delete(url)
request_patch(url, payload)

request_download(url)

Receiving and Parsing Responses

It's left up to the designer to decide the frequency at which to check the status of a request and
obtain its response.
e get_request_result_if_done(request_id)

o request_id is the value returned by all of the request methods in the section
above. This allows for specific requests to be queried without touching others. If
the request has completed, the response will be retrieved and the request will
be cleared from the list.

o Responses are a table with the following members:

m status_code
e HTTP status code of the response

m text

e Response body of the request
m url

e URL of the request
m elapsed

e Time taken for the request to complete in seconds
e get_request_list()
o Returns a table with keys containing request_id of all non-cleared requests
and values containing 1 or 0 as to whether a response is available or not. This
allows for checking request status without clearing requests from the list. A
designer can then call get_request_result_if_done(request_id) to
obtain the response.
e json_to_table(text)
o Parses a JSON given as a string text, returning it as a Lua table.

Examples

The TutoLuaNetRequest MEU is available in AAASeed as a basic demonstration of how to
integrate aaa.net_requests into a MEU.

Code Snippets

Let's assume we’ve called a function that makes a request using the following:

local url =
"https://api.open-meteo.com/vl/forecast?latitude=43.7001&longitude=-79.4163&hourly=te
mperature_2m&forecast_days=1"

self.request id = aaa.net_requests.request get(url)

Either in the meu :update() function or elsewhere, we can check for the request being done:

if (self.request_id ~= nil) then

local res = aaa.net_requests.get request result if done(self.request id)
if (res ~= false) then

if (res.status_code ==) then

self.response = aaa.net_requests.json_to_table(res.text)
end

self.request_id = nil
end

Alternatively, if we had a lot of requests to check and we needed to check all of them:
(We'll assume that we have a self.responses table for the MEU which we use to store all the
responses to our requests)

local request_list = aaa.net_requests.get request list()
for id, done in pairs(request list) do
if (done == 1) then

local res = aaa.net_requests.get request_result_if_done(id)
if res ~= false then

local response table = aaa.net requests.json_to table(res.text)

table.insert(self.responses, response table)

Videos
e wi Open Meteo Weather APl Demo.mp4

https://drive.google.com/file/d/1F3STfYIwsAJk4Txnl5tO8uG9V-Qqr0es/view?usp=sharing

	AAASeed - Net Requests
	Documentation for the net_requests Class
	Overview:
	API Reference
	Authentication
	Requests
	Receiving and Parsing Responses

	Examples
	Code Snippets
	Videos

